Quick Start¶
Get up and running with AgentHelm in 5 minutes.
Installation¶
1. Initialize Configuration¶
This creates ~/.agenthelm/config.yaml with default settings.
2. Set Your API Key¶
# Set via config
agenthelm config set api_keys.mistral your-api-key
# Or use environment variable
export MISTRAL_API_KEY="your-api-key"
3. Run Your First Task¶
Output:
Running task: What is the capital of France?
Model: mistral/mistral-large-latest, Max iterations: 10
✓ Success
Paris is the capital of France.
─── Summary ───
Tokens: 156 (120 in / 36 out)
4. Try Interactive Chat¶
AgentHelm Chat (model: mistral/mistral-large-latest)
Type 'exit' or 'quit' to end the session
> Explain quantum computing in simple terms
Quantum computing uses quantum bits (qubits) that can exist in multiple
states simultaneously, allowing quantum computers to process many
possibilities at once...
> exit
5. Create and Execute Plans¶
# Generate a plan
agenthelm plan "Build a todo app with Flask" -o plan.yaml
# Execute the plan
agenthelm execute plan.yaml
Next Steps¶
- CLI Reference - All commands and options
- Agents - ToolAgent and PlannerAgent
- Orchestration - Multi-agent workflows
- MCP Integration - Connect to MCP servers
Python SDK¶
import dspy
from agenthelm import ToolAgent, tool
# Define a tool
@tool()
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
# Create and run agent
lm = dspy.LM("mistral/mistral-large-latest")
agent = ToolAgent(name="calculator", lm=lm, tools=[add])
result = agent.run("What is 2 + 2?")
print(result.answer) # "4"